phone.png 
+37517 396-41-39   velcom.gif +37529 196-41-39
mts.gif  +37533 366-41-39    +37525 939-41-39
Гипермаркет насосов! Доставка по всей Беларуси!
Ваша корзина
пуста
Перейти в корзину

Насос и его двигатель. Насос-двигатель

Насос и его двигатель. Насос-двигатель

Мы каждый день узнаем о насоса что-нибудь новенькое, такое, о чем мы раньше, по многим причинам, и не задумывались. У нас есть насос, он прекрасно качает воду из источника, которой хватает на полив сада-огорода и пользование ею всеми членами семьи и на работу всей бытовой техники. Зачем нам знать еще больше об этом удивительном агрегате?

Мы даже знаем сейчас, что каждый, в принципе, бытовой насос, в зависимости от его конструкции, можно использовать, как в качестве перекачивающего устройства, придав ему механическую энергию внешнего привода, так и в качестве двигателя, через который можно получить дополнительную энергию. Например, раскручивая ротор электродвигателя насоса струей поступающей жидкости, можно, при некотором изменении конструкции, получить источник электроэнергии в доме.123.png

Если взять более простые конструкции, то можно привести пример водяной мельницы, где двигателем и своеобразным механическим насосом можно рассматривать ее водное колесо. Многие, если не сказать, большинство гидронасосов имею возможность обратного применения.

Но сейчас речь пойдет совсем о другом. Мы поговорим о стандартном применении гидронасосов и источниках энергии для них, которые применяются в бытовых и промышленных агрегатах перекачки воды. Мы будем говорить о самом выгодном виде механических двигателей для насосов – электродвигателях, которые имеют самое широкое распространение в насосах, как бытовых, так и во всех отраслях промышленности.

Асинхронный электродвигатель. Плюсы и минусы применения. Конструкции типов

Положительные стороны от применения электродвигателей в работе насосов видны с первого раза: это частые включения (повторные пуски) двигателей в работу в зависимости от водных параметров в магистрали, малое энергопотребление, простота конструкций и выгодность производства, динамичность и малые размеры электродвигателей и многое другое.

Мы разберем самый «выгодный» в производстве и простой в бытовом применении асинхронный электродвигатель (индукционный двигатель), как электрическую машину переменного тока с частотой вращения ротора меньшим по сравнению с частотой магнитного поля, которое создается токами в обмотке статора:

  1. Он прост в изготовлении;

  2. Имеет относительно низкую цену;

  3. Надежен и неприхотлив при работе;

  4. Энерго- и эксплуатационно малозатратен;

  5. Имеет простой доступ к подключению в домашнюю электросеть без дополнительных преобразующих устройств;

  6. Нет необходимости регулировать частоту вращения ротора.

Но при этом такие электромашины с асинхронным (индукционным) двигателем:

  1. Имеют низкий по силе пусковой момент;

  2. Большую величину пускового тока;

  3. Мощность с низким коэффициентом;

  4. Сложности с регулировкой скоростных характеристик ротора и отсутствие необходимой точности вращения;

  5. Скоростные характеристики вращения ротора ограничиваются частотными показателями сети (бытовая сеть имеет частоту в 50 Гц – двигатель может максимально развить обороты не более 3000 в минуту);

  6. Огромная (в квадрате) связь электромагнитного поля на статоре с напряжением в сети – при любом изменении напряжения в 2 раза, вращающий момент двигателя измениться в 4 раза, что намного хуже таких же показаний в электродвигателях на постоянном токе.

Для людей далеких от всяких технических конструкций проведем легкий «ликбез»:

  1. Асинхронный электродвигатель имеет в своей конструкции статор (часть электромотора, которая находится в неподвижном, стабильном положении) и ротор (часть, которая вращается при подключении двигателя к сети), они разделены воздушным зазором и не соприкасаются между собой;

  2. Статорная обмотка является многофазной (3-хфазной), с проводниками равноудаленными один от другого на 120 градусов относительно оси вращения;

  3. Магнитное поле возникает в магнитопроводе статора, который меняет полярность под воздействием частоты тока проходящего по обмотке. Магнитопровод представляет собой пластины из электротехнической стали, собранных методом шихтовки в общий блок;

  4. Роторы в асинхронном двигателе могут быть конструктивно 2-х типов: короткозамкнутый и фазный. Их единственное различие – это исполнение обмотки на роторе, при аналогичном магнитопроводе как у статора.

Короткозамкнутый ротор имеющий обмотку в виде «беличьего колеса» по аналогии конструкции, собирается из алюминиевых (иногда из меди или латуни) стержневых проводников, которые замкнуты с 2-мя торцевыми кольцами, проходя через специальные пазы в сердечнике ротора.

У такого типа обмоток ротора при нерегулируемом пуске образуется не очень большой по величине пусковой момент, но требующий больших величин тока. Сейчас применяют в основном роторы с глубокими пазами для стержней, что позволяет увеличить сопротивление в обмотке и уменьшить величину пускового тока. Из-за таких недостатков раньше мало применяли короткозамкнутую схему обмотки ротора, но теперь при развитии линии частотных преобразователей многие фирмы достигли эффекта плавного пуска электродвигателей, регулируя наращивание частоты пускового тока.

Так появились электромашины с короткозамкнутой схемой ротора со ступенчатым регулированием скорости вращения вала, появились многоскоростные электродвигатели с изменением числа пар полюсов в обмотке статора.

Разновидностью асинхронного электродвигателя с короткозамкнутым ротором считаются двигатели с массивными роторами, где эта деталь механизма изготовлена полностью из ферромагнитного материала (стальной цилиндр) – это одновременно и магнитопровод и обмотка-проводник. Вращение ротора здесь происходит за счет создания индукции магнитного поля ротора, во взаимодействии с вихревыми токами магнитного потока статора. Такие конструкции намного проще изготавливать, следовательно они обходятся дешевле в производстве, имеют большую механическую прочность, что очень необходимо для машин с большой скоростью вращения и они имеют более высокую величину пускового момента.

Принцип работы асинхронного электродвигателя с фазовым ротором

Асинхронные электродвигатели с фазовым ротором допускают плавное регулирование скорости вращения вала ротора в широком диапазоне. Фазный ротор содержит в своей конструкции многофазную (3-хфазную) обмотку, выведенную на 2 контактных кольца, которые соединены с ротором единой конструкцией. Соединение с регулированной по величине напряжения электросетью происходит за счет графитовых или металлографитовых щеток, соприкасаемых с кольцами в единую цепь с обмотками ротора.

В конструкцию управления работой ротора входят так же:

  1. Пускорегулирующий реостат, как активное сопротивление к каждой фазе;

  2. Дроссели индуктивности каждой фазы роторного узла, что, в конечном итоге, позволяет уменьшить пусковые токи и держит их на постоянном уровне;

  3. Дополнительны источник постоянного тока, что позволяет получать величины синхронной электромашины, то есть зависимость оборотов от частоты напряжения на ротора без разниц величин;

  4. Для управления скоростными характеристиками и электромагнитными полями на роторе включено питание установки от инвертора для машин с двойным питанием. Но возможно использовать эту конструкцию без помощи инвертора с заменой фазировки на противоположную от статорной.


Возможны еще несколько вариантов электродвигателей для насосов. Например, трёхфазный коллекторный асинхронный двигатель с питанием со стороны ротора и другие электромашины.